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Identifying genetic correlations between complex traits and 
diseases can provide useful etiological insights and help 
prioritize likely causal relationships. The major challenges 
preventing estimation of genetic correlation from genome-
wide association study (GWAS) data with current methods 
are the lack of availability of individual-level genotype data 
and widespread sample overlap among meta-analyses. We 
circumvent these difficulties by introducing a technique—
cross-trait LD Score regression—for estimating genetic 
correlation that requires only GWAS summary statistics 
and is not biased by sample overlap. We use this method 
to estimate 276 genetic correlations among 24 traits. The 
results include genetic correlations between anorexia nervosa 
and schizophrenia, anorexia and obesity, and educational 
attainment and several diseases. These results highlight the 
power of genome-wide analyses, as there currently are no 
significantly associated SNPs for anorexia nervosa and only 
three for educational attainment.

Understanding the complex relationships among human traits and 
diseases is a fundamental goal of epidemiology. Randomized control-
led trials and longitudinal studies are time-consuming and expensive, 
so many potential risk factors are studied using cross-sectional cor-
relation studies performed for a single time point. Obtaining causal 

inferences from such studies can be challenging because of issues 
such as confounding and reverse causation, which can lead to spuri-
ous associations and mask the effects of real risk factors1,2. Genetics 
can help elucidate cause and effect, as inherited genetic risks cannot 
be subject to reverse causation and are correlated with a smaller list 
of confounders.

The first methods to test for genetic overlap were family studies3–7. 
To estimate the genetic overlap for many pairs of phenotypes, family 
study designs require the measurement of multiple traits for the same 
individuals. Consequently, it is challenging to scale these designs to 
a large number of traits, especially traits that are difficult or costly 
to measure (for example, low-prevalence diseases). More recently, 
GWAS have allowed effect size estimates to be obtained for specific 
genetic variants, so it is possible to test for shared genetics by looking 
for correlations in effect sizes across traits, which does not require 
measuring multiple traits per individual.

There exists a large class of methods for interrogating genetic over-
lap via GWAS that focus only on genome-wide significant SNPs. One 
of the most influential methods in this class is Mendelian randomiza-
tion, which uses significantly associated SNPs as instrumental vari-
ables to attempt to quantify causal relationships between risk factors 
and disease1,2. Methods that focus on significant SNPs are effective for 
traits where there are many significant associations that account for a 
substantial fraction of heritability8,9. For many complex traits, herit-
ability is distributed over thousands of variants with small effects, and 
the proportion of heritability accounted for by significantly associated 
variants at current sample sizes is small10. In such situations, one can 
often obtain more accurate results by using genome-wide data rather 
than data for only significantly associated variants11.

A complementary approach is to estimate genetic correlation, 
which considers the effects of all SNPs, including those that do not 
reach genome-wide significance (Online Methods). The two main 
existing techniques for estimating genetic correlation from GWAS 
data are restricted maximum likelihood (REML)11–16 and polygenic 
scores17,18. These methods have only been applied to a few traits 
because they require individual-level genotype data, which are dif-
ficult to obtain owing to informed consent limitations.

To overcome these limitations, we have developed a technique for 
estimating genetic correlation using only GWAS summary statistics 
that is not biased by sample overlap. Our method, cross-trait LD Score 
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regression, is a simple extension of single-trait LD Score regression19 
and is computationally very fast. We apply this method to data from 
24 GWAS and report genetic correlations for 276 pairs of pheno-
types, demonstrating shared genetic bases for many complex traits 
and diseases.

RESULTS
Overview of the methods
The method presented here for estimating genetic correlation from 
summary statistics relies on the fact that the GWAS effect size esti-
mate for a given SNP incorporates the effects of all SNPs in linkage 
disequilibrium (LD) with that SNP19,20. For a polygenic trait, SNPs 
with high LD will have higher χ2 statistics on average than SNPs with 
low LD19. A similar relationship holds if we replace the χ2 statistics 
for a single study with the product of the z scores from two studies of 
traits with nonzero genetic correlation.

More precisely, under a polygenic model11,13, the expected value 
of z1jz2j for a SNP j is 
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where Ni is the sample size for study i, g  is the genetic covari-
ance (defined in the Online Methods), j  is the LD Score19, NS is  
the number of individuals included in both studies and   is the  
phenotypic correlation among the NS overlapping samples. We  
derive this equation in the Supplementary Note. If study 1 and study 2  
are the same study, then equation (1) reduces to the single-trait  
result from ref. 19, as the genetic covariance between a trait and 
itself is heritability, and χ2 = z2. As a consequence of equation (1),  
we can estimate genetic covariance using the slope from the  
regression of z1jz2j on LD Score, which is computationally very  
fast (Online Methods).

Sample overlap creates spurious correlation between z1j and z2j, 
which inflates z1jz2j. The expected magnitude of this inflation is  
uniform across all markers and in particular does not depend on 
LD Score. As a result, sample overlap only affects the intercept from 
this regression (the term N N Ns / 1 2 ) and not the slope, so the 
estimates of genetic correlation will not be biased by sample overlap. 
Similarly, shared population stratification will alter the intercept but 
have minimal impact on the slope because the correlation between 
LD Score and the rate of genetic drift is minimal19. If we are will-
ing to assume no shared population stratification and we know the 
amount of sample overlap and phenotypic correlation in advance (that 
is, the true value of N N Ns / 1 2 ), we can constrain the intercept to  
this value. We refer to this approach as constrained-intercept LD  
Score regression. Constrained-intercept LD Score regression has  
lower standard error, often by as much as 30%, than LD Score  
regression with an unconstrained intercept but will yield biased and 
misleading estimates if the intercept is misspecified, for example,  
if we specify the wrong value of Ns  or do not completely control  
for population stratification.

Normalizing genetic covariance by SNP heritabilities yields genetic 
correlation: r h hg g: /= 1

2
2
2  where hi

2  denotes the SNP heritability11  
from study i. Genetic correlation ranges between −1 and 1. Results 
similar to equation (1) hold if one or both studies are case-control  
studies, in which case, genetic covariance is on the observed  
scale. Details are provided in the Supplementary Note. There is no 
distinction between observed- and liability-scale genetic correla-
tion for case-control traits, so we can define and estimate the genetic  
correlation between a case-control trait and a quantitative trait and 

(1)(1)

the genetic correlation between pairs of case-control traits without 
the need to specify a scale (Supplementary Note).

Simulations
We performed a series of simulations to evaluate the robustness of  
the model to potential confounders such as sample overlap and  
model misspecification and to verify the accuracy of the standard 
error estimates (Online Methods).

Cross-trait LD Score regression estimates and standard errors from 
1,000 simulations of quantitative traits are shown in Table 1. For each 
simulation replicate, we generated 2 phenotypes for each of 2,062 
individuals in our sample by drawing effect sizes for approximately 
600,000 SNPs on chromosome 2 from a bivariate normal distribution. 
We then computed summary statistics for both phenotypes and esti-
mated heritability and genetic correlation with cross-trait LD Score 
regression. The summary statistics were generated from completely 
overlapping samples. These simulations confirm that cross-trait LD 
Score regression yields accurate estimates of the true genetic correla-
tion and that the standard errors match the standard deviation across 
simulations. Thus, cross-trait LD Score regression is not biased by 
sample overlap, in contrast to estimation of genetic correlation via 
polygenic risk scores, which is biased in the presence of sample over-
lap18. We also evaluated simulations with one quantitative trait and 
one case-control trait and show that cross-trait LD Score regression 
can be applied to binary traits and is not biased by oversampling of 
cases (Supplementary Table 1).

Estimates of heritability and genetic covariance can be biased if  
the underlying model of genetic architecture is misspecified, for 
example, if the variance explained is correlated with LD Score or 
minor allele frequency (MAF)19,21. Because genetic correlation  
is estimated as a ratio, it is more robust; biases that affect the numer-
ator and the denominator in the same direction tend to cancel.  
We obtained approximately correct estimates of genetic correla-
tion, even in simulations with models of genetic architecture where 
our estimates of heritability and genetic covariance were biased 
(Supplementary Table 2).

Replication of psychiatric cross-disorder results
As technical validation, we replicated the estimates of genetic correla-
tion among psychiatric disorders obtained with individual-level geno-
type data and REML14 by applying cross-trait LD Score regression to 
summary statistics from the same data22. These summary statistics 
were generated from non-overlapping samples, so we applied cross-
trait LD Score regression using both unconstrained and constrained 
intercepts (Online Methods). The results from cross-trait LD Score 
regression were similar to the results from REML (Fig. 1). Cross-trait 
LD Score regression with a constrained intercept gave standard errors 
that were only slightly larger than those from REML, whereas the 
standard errors from cross-trait LD Score regression with intercept 
were substantially larger, especially for traits with small sample sizes 

Table 1  Simulations with complete sample overlap
Parameter True value Estimate s.d. s.e.

h2 0.58 0.58 0.072 0.075

ρg 0.29 0.29 0.057 0.058

rg 0.50 0.49 0.079 0.073

Estimates represent the average cross-trait LD Score regression estimates across 1,000 
simulations; s.d. represents the standard deviation of the estimates across 1,000  
simulations, and s.e. represents the mean cross-trait LD Score regression standard  
error across 1,000 simulations. Further details on the simulation setup are given in  
the Online Methods.
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(for example, attention deficit and hyperactivity disorder (ADHD) 
and autism spectrum disorder (ASD)).

Application to summary statistics from 24 phenotypes
We used cross-trait LD Score regression to estimate genetic correla-
tions among 24 phenotypes23–28 (see URLs and the Online Methods). 
The genetic correlation estimates for all 276 pairwise combinations of 
the 24 traits are shown in Figure 2. For clarity of presentation, the 24 
phenotypes were restricted to include only one phenotype from each 
cluster of closely related phenotypes (Online Methods). The genetic 
correlations among the educational, anthropometric, smoking and 
insulin-related phenotypes that were excluded from Figure 2 are 
shown in Supplementary Figures 1–4, respectively. Corresponding 
references and sample sizes are shown in Supplementary Table 3. 
A full table of the 1,176 genetic correlations among the 49 traits is 
provided in Supplementary Table 4.

The first section of Table 2 lists genetic correlation results that 
are consistent with epidemiological associations but, as far as we 
are aware, have not previously been reported using genetic data. 
The estimates of genetic correlation between age at menarche and 
adult height29 and between triglyceride levels30 and type 2 diabe-
tes (T2D)30,31 are consistent with epidemiological associations. The 
estimate of a negative genetic correlation between anorexia nervosa 
and obesity suggests that the same genetic factors influence normal 

variation in body mass index (BMI) and dysregulated BMI in psy-
chiatric illness. This result is consistent with the observation that 
GWAS findings for BMI implicate neuronal rather than metabolic 
cell types and epigenetic marks32,33. The negative genetic correlation 
between adult height and coronary artery disease (CAD) agrees with 
a replicated epidemiological association34–36. We observed several 
significant associations with the educational attainment phenotypes 
from Rietveld et al.37: we estimated a statistically significant nega-
tive genetic correlation between college attendance and Alzheimer’s 
disease, which agrees with epidemiological results38,39. The positive 
genetic correlation between college attendance and bipolar disorder is 
consistent with previous epidemiological reports40,41. The estimate of 

a negative genetic correlation between smok-
ing and college attendance is consistent with 
observed differences in smoking rate as a 
function of educational attainment42.
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Figure 1  Replication of psychiatric cross-disorder results. This plot 
compares cross-trait LD Score (LDSC) regression estimates of genetic 
correlation using summary statistics from ref. 22 to estimates obtained 
from REML with the same data14. The horizontal axis indicates pairs of 
phenotypes, and the vertical axis indicates genetic correlation. Error bars 
represent standard errors. The estimates of genetic correlation among 
psychiatric phenotypes in Figure 2 use larger sample sizes; the analysis 
here is intended as a technical validation. ADHD, attention deficit 
hyperactivity disorder; ASD, autism spectrum disorder; BPD, bipolar 
disorder; MDD, major depressive disorder; SCZ, schizophrenia.
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Figure 2  Genetic correlations among 24 traits 
analyzed by genome-wide association. Blue, 
positive genetic correlation; red, negative genetic 
correlation. Larger squares correspond to more 
significant P values. Genetic correlations that are 
different from zero at a false discovery rate (FDR) 
of 1% are shown as full-sized squares. Genetic 
correlations that are significantly different from 
zero after Bonferroni correction for the 300 tests 
in this analysis are marked with an asterisk. We 
show results that do not pass multiple-testing 
correction as smaller squares, to avoid obscuring 
positive controls, where the estimates point in the 
expected direction but do not achieve statistical 
significance owing to small sample size. The 
correction for multiple testing is conservative 
as the tests are not independent. To keep this 
figure to a reasonable size, we have selected 
representatives of several clusters of highly 
correlated traits. Additional genetic correlations 
are shown in Supplementary Figures 1–4. All 
genetic correlations in this report can be found 
in tabular form in Supplementary Table 4. BMI, 
body mass index; T2D, type 2 diabetes; LDL, low-
density lipoprotein; HDL, high-density lipoprotein.
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The second section of Table 2 lists three results that are, to the 
best of our knowledge, new both to genetics and epidemiology. One, 
we found a positive genetic correlation between anorexia nervosa 
and schizophrenia. Comorbidity for eating and psychotic disorders 
has not been thoroughly investigated in the psychiatric literature43,44, 
and this result raises the possibility of similarity between these 
classes of disease. Two, we estimated a negative genetic correlation 
between ulcerative colitis and childhood obesity. The relationship 
between premorbid BMI and ulcerative colitis is not well understood;  
exploring this relationship may be a fruitful direction for further 
investigation. Three, we estimated a positive genetic correlation 
between ASD and educational attainment (which has very high 
genetic correlation with IQ37,45,46). The ASD summary statistics 
were generated using a case-pseudocontrol study design, so this result  
cannot be explained by oversampling of ASD cases from more  
highly educated parents, which is observed epidemiologically47. The 
distribution of IQ among individuals with ASD has a lower mean 
than the distribution for the general population but with heavy tails48 
(that is, an excess of individuals with low and high IQs). There is also 
emerging evidence that the genetic architecture of ASD varies across 
the IQ distribution49.

The third section of Table 2 lists interesting examples where 
the genetic correlation was close to zero with small standard error.  
The low genetic correlation between schizophrenia and rheumatoid 
arthritis is interesting because schizophrenia has been observed to be 
protective for rheumatoid arthritis50, although the epidemiological  
effect is weak; it is thus possible that there is a real genetic cor-
relation but that it was too small for us to detect. The low genetic  
correlation between schizophrenia and smoking is notable because 

of the increased tobacco use (in terms of both 
prevalence and number of cigarettes per day) 
among individuals with schizophrenia51. The 
low genetic correlation between schizophre-
nia and plasma lipid levels contrasts with a 
previous report of pleiotropy between schizo-
phrenia and triglyceride levels52. Pleiotropy 
(unsigned) is different from genetic correla-
tion (signed; Online Methods); however, the 
pleiotropy reported by Andreassen et al.52 
could be explained by the sensitivity of the 
method used to the properties of a small 
number of regions with strong LD rather 
than trait biology (Supplementary Fig. 5). 
We estimated near-zero genetic correlation 
between Alzheimer’s disease and schizo-
phrenia. The genetic correlations between 
Alzheimer’s disease and other psychiatric 
traits (anorexia nervosa, bipolar disorder, 
major depression and ASD) were also close 
to zero but with larger standard errors, due 
to smaller sample sizes. This suggests that 
the genetic basis of Alzheimer’s disease is 
distinct from that for psychiatric conditions. 
Lastly, we estimated near-zero genetic cor-
relation between rheumatoid arthritis and 
both Crohn’s disease and ulcerative colitis. 
Although these diseases share many associ-
ated loci53,54, there appears to be no direc-
tional trend: some rheumatoid arthritis risk 
alleles are also risk alleles for ulcerative colitis 
and Crohn’s disease, but many rheumatoid 

arthritis risk alleles are protective for ulcerative colitis and Crohn’s 
disease53, yielding near-zero genetic correlation. This example high-
lights the distinction between pleiotropy and genetic correlation 
(Online Methods).

Finally, the estimates of genetic correlations among metabolic traits 
are consistent with the estimates obtained using REML in Vattikuti  
et al.15 (Supplementary Fig. 6) and are directionally consistent  
with the recent Mendelian randomization results from Wurtz et al.55. 
The estimate of 0.54 (standard error = 0.07) for the genetic correlation 
between Crohn’s disease and ulcerative colitis is consistent with the 
estimate of 0.62 (0.04) from Chen et al.16.

DISCUSSION
We have described a new method for estimating genetic correlation 
from GWAS summary statistics, which we apply to a data set of GWAS 
summary statistics consisting of 24 traits and more than 1.5 million 
unique phenotype measurements. We report several new findings that 
would have been difficult to obtain with existing methods, including 
a positive genetic correlation between anorexia nervosa and schizo-
phrenia. Our method replicated many previously reported GWAS-
based genetic correlations and confirmed observations of overlap 
from correlations among genome-wide significant SNPs, Mendelian 
randomization results and epidemiological associations.

This method is an advance for several reasons: it does not require 
individual genotypes, genome-wide significant SNPs or LD pruning 
(which causes loss of information if causal SNPs are in LD). Our 
method is not biased by sample overlap and is computationally fast. 
Furthermore, our approach does not require measuring multiple traits 
for the same individuals, so it scales easily to studies of thousands 

Table 2  Genetic correlation estimates, standard errors and P values for selected pairs of traits
Phenotype 1 Phenotype 2 rg (s.e.) P value

Epidemiological Age at menarche Adult height 0.13 (0.03) 2 × 10−6**

Age at menarche Type 2 diabetes −0.13 (0.04) 2 × 10−3*

Age at menarche Triglycerides −0.12 (0.04) 1 × 10−3*

Coronary artery disease Age at menarche −0.12 (0.05) 3 × 10−2

Coronary artery disease Years of education −0.25 (0.06) 1 × 10−4**

Coronary artery disease Adult height −0.17 (0.04) 1 × 10−5**

Alzheimer’s disease Years of education −0.29 (0.1) 5 × 10−3*

Bipolar disorder Years of education 0.30 (0.06) 9 × 10−7**

BMI Years of education −0.28 (0.03) 6 × 10−16**

Triglycerides Years of education −0.26 (0.06) 2 × 10−8**

Anorexia nervosa BMI −0.18 (0.04) 3 × 10−7**

Ever/never smoker Years of education −0.36 (0.06) 2 × 10−8**

Ever/never smoker BMI 0.20 (0.04) 8 × 10−7**

New/nonzero Autism spectrum disorder Years of education 0.30 (0.08) 2 × 10−4*

Ulcerative colitis Childhood obesity −0.34 (0.08) 3 × 10−5**

Anorexia nervosa Schizophrenia 0.19 (0.04) 2 × 10−5**

New/low Schizophrenia Alzheimer’s disease 0.04 (0.06) >0.1

Schizophrenia Ever/never smoker 0.04 (0.06) >0.1

Schizophrenia Triglycerides −0.04 (0.04) >0.1

Schizophrenia LDL cholesterol −0.04 (0.04) >0.1

Schizophrenia HDL cholesterol 0.03 (0.04) >0.1

Schizophrenia Rheumatoid arthritis −0.04 (0.05) >0.1

Crohn’s disease Rheumatoid arthritis −0.03 (0.08) >0.1

Ulcerative colitis Rheumatoid arthritis 0.09 (0.08) >0.1

Results are grouped into genetic correlations that are new genetic results but are consistent with established  
epidemiological associations (“Epidemiological”), genetic correlations that are new to both genetics and epidemiology  
(“New/nonzero”) and interesting null results (“New/low”). The P values are uncorrected P values. Results that passed 
multiple-testing corrections for the 300 tests in Figure 2 at an FDR of 1% have a single asterisk; results that passed 
Bonferroni correction have two asterisks. We present some genetic correlations that agree with epidemiological  
associations but that did not pass multiple-testing correction in these data.
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of pairs of traits. These advantages allow us to estimate genetic cor-
relation for many more pairs of phenotypes than was possible with 
existing methods.

The challenges in interpreting genetic correlation are similar to the 
challenges in Mendelian randomization. We highlight two difficulties. 
First, genetic correlation is immune to environmental confounding 
but is subject to genetic confounding, analogous to confounding by 
pleiotropy in Mendelian randomization. For example, the genetic cor-
relation between high-density lipoprotein (HDL) levels and CAD in 
Figure 2 could result from a causal effect HDL → CAD but could 
also be mediated by triglyceride levels (TG)9,56, represented graphi-
cally57 as HDL ← G → TG → CAD, where G is the set of genetic 
variants with effects on both HDL and triglyceride levels. Extending 
genetic correlation to multiple genetically correlated phenotypes is 
an important direction for future work58. Second, although genetic 
correlation estimates are not biased by oversampling of cases, they are 
affected by other forms of biased sampling, such as misclassification14 
and case-control-covariate sampling (for example, in a BMI-matched 
study of T2D).

We note several limitations of cross-trait LD Score regression  
as an estimator of genetic correlation. First, cross-trait LD Score 
regression requires larger sample sizes than methods that use  
individual genotypes to achieve equivalent standard error. Second, 
cross-trait LD Score regression is not currently applicable to samples 
from recently admixed populations. Third, we have not investigated 
the potential impact of assortative mating on estimates of genetic 
correlation, which remains a future direction. Fourth, methods built 
from polygenic models, such as cross-trait LD Score regression and 
REML, are most effective when applied to traits with polygenic 
genetic architectures. For traits where significant SNPs account for 
a sizable proportion of heritability, analyzing only these SNPs can 
be more powerful. Developing methods that make optimal use of 
both large-effect SNPs and diffuse polygenic signal is a direction 
for future research.

Despite these limitations, we believe that the cross-trait LD Score 
regression estimator of genetic correlation will be a useful addition 
to the epidemiological toolbox because it allows for rapid screening 
for correlations among a diverse set of traits, without the need for 
measuring multiple traits on the same individuals or genome-wide 
significant SNPs.

URLs. ldsc software, http://www.github.com/bulik/ldsc; PGC  
(psychiatric) summary statistics, http://www.med.unc.edu/pgc/
downloads; GIANT (anthropometric) summary statistics, http://
www.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium_data_files; EGG (Early Growth Genetics) summary 
statistics, http://www.egg-consortium.org/; MAGIC (insulin, 
glucose) summary statistics, http://www.magicinvestigators.org/
downloads/; CARDIoGRAM (coronary artery disease) summary 
statistics, http://www.cardiogramplusc4d.org/; DIAGRAM (type 2  
diabetes) summary statistics, http://www.diagram-consortium.org/;  
rheumatoid arthritis summary statistics, http://www.broadinstitute.
org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/; IGAP 
(Alzheimer’s) summary statistics, http://www.pasteur-lille.fr/en/
recherche/u744/igap/igap_download.php; IIBDGC (inflammatory 
bowel disease) summary statistics (we used a newer version of these 
data with 1000 Genomes Project imputation), http://www.ibdgenetics.
org/downloads.html; plasma lipid summary statistics, http://www.
broadinstitute.org/mpg/pubs/lipids2010/; SSGAC (educational  
attainment) summary statistics, http://www.ssgac.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Definitions of genetic covariance and correlation. All definitions refer to  
narrow-sense heritabilities and genetic covariances. Let S denote a set of M SNPs,  
let X denote a vector of additively coded genotypes (0, 1 or 2) for the SNPs in 
S, and let y1 and y2 denote phenotypes. Define b aa: [ , ]= ∈argmax CorRM y X1 , 
where the maximization is performed in the population (that is, in the infinite 
data limit). Let γ denote the corresponding vector for y2. The maximizing value 
of β is the projection of y onto the span of X, so β is unique modulo SNPs in 
perfect LD. Define hS

2 , the heritability explained by SNPs in S, as 

h yS j
j

2
1

2( ) :=∑b

and S( ),y y1 2 , the genetic covariance among SNPs in S, as

S ( ) :,y y j j
j S

1 2 =
∈
∑ b g

The genetic correlation among SNPs in S is r y y y y h y h yS S S( ) : ( )/ ( ) ( ), ,1 2 1 2
2

1
2

2= g ,  
which lies in [−1, 1]. Following ref. 11, we use subscript g (as in h rg g g

2 , , ) when 
the set of SNPs is genotyped and imputed SNPs in GWAS.

SNP genetic correlation (rg) is different from family study genetic correla-
tion. In a family study, the relationship matrix captures information about 
all genetic variation, not just common SNPs. As a result, family studies esti-
mate the total genetic correlation (S equals all variants). Unlike the relation-
ship between SNP heritability11 and total heritability, for which h hg

2 2≤ , no 
similar relationship holds between SNP genetic correlation and total genetic 
correlation. If β and γ are more strongly correlated among common variants 
than rare variants, then the total genetic correlation will be less than the SNP 
genetic correlation.

Genetic correlation is (asymptotically) proportional to Mendelian rand-
omization estimates. If we use a genetic instrument 

g Xi ij j
j S

:=
∈
∑ b

 

to estimate the effect b12 of y1 on y2, the 2SLS estimate is ˆ : /b g y g yT T
2SLS = 2 1   

(ref. 59). The expectations of the numerator and denominator are 
E g y y yT[ ] ( , )2 1 2= S  and E g y h yT[ ] ( )1

2
1= S . Thus, plimN b→∞ =ˆ

2SLS  

r y y h y h yS S S( , ) ( )/ ( )2 1
2

1
2

2 . If we use the same set S of SNPs to estimate b12 

and b21 (for example, if S is the set of all common SNPs, as in the genetic corre-
lation analyses in this report), then this procedure is symmetric in y1 and y2.

Genetic correlation is different from pleiotropy. Two traits have a pleiotropic 
relationship if many variants affect both. Genetic correlation is a stronger con-
dition than pleiotropy: to exhibit genetic correlation, the directions of effect 
must also be consistently aligned.

Cross-trait LD score regression. The cross-trait LD Score regression  
equation is 

E z z
N N
M

N
N Nj j

g
j

S[ | ]1 2
1 2

1 2
 = +

 

where zij denotes the z score for study i and SNPj, Ni is the sample size for 
study i, eg is the genetic covariance, j is the LD Score19, NS is the number of 
individuals included in both studies and   is the phenotypic correlation among 
the NS overlapping samples. We derive this equation in the Supplementary 
Note. We estimate genetic covariance by regressing z1jz2j against  j j jN N1 2 ,  
(where Nij is the sample size for SNP j in study i) and then multiplying the 
resulting slope by M, the number of SNPs in the reference panel with MAF 
between 5% and 50% (technically, this is an estimate of the genetic covariance 
among SNPs with 5–50% MAF; Supplementary Note).

If we know the correct value of the intercept term N N NS / 1 2  ahead of 
time, we can reduce the standard error by constraining the intercept to this 
value, using the –constrain-intercept flag in ldsc (for pairs of binary traits, we 
give corresponding expression in terms of the number of overlapping cases 

(2)(2)

and controls in the Supplementary Note). Note that this works even when 
there is known nonzero sample overlap.

We recommend using within-sample estimate of   (denoted ̂ ), rather than 
the population value for  . Under unbiased sampling, ̂  is consistent for   
with variance of O(1/N), so, in this case, the distinction between   and ̂  is not 
of great importance. Under biased sampling, the expected LD Score regression 
intercept depends on the expected sample correlation E [yi1yi2 | s = 1] (which 
is estimated consistently by ̂ ), not the population   value. Thus, we advise 
that ̂  be used rather than   when constraining the intercept.

Regression weights. For heritability estimation, we use the regression weights 
from ref. 19. If effect sizes for both phenotypes are drawn from a bivariate 
normal distribution, then the optimal regression weights for genetic covari-
ance estimation are:

var[ | ]z z N h
M

N h
M

N N
Mj j j j j

g
j1 2

1 1
2

2 2
2 1 21 1   = +







+






+ +
 N

N N
s

1 2

2









(Supplementary Note). This quantity depends on several parameters  
(h h Ng S1

2
2
2, , , ,  ) that are not known a priori, so it is necessary to estimate them 

from the data. We compute the weights in two steps:

1. � The first regression is weighted using heritabilities from the single-trait 
LD Score regressions, NS=0, and g is estimated as: 

ˆ : ( )g j j
j

N N z z= − ∑1 2
1

1 2

2. � The second regression is weighted using the estimates of NS and  g  
from step 1. The genetic covariance estimate that we report is the  
estimate from the second regression.

Linear regression with weights estimated from the data is called feasible 
generalized least squares (FGLS). FGLS has the same limiting distribution 
as weighted least squares (WLS) with optimal weights, so WLS P values are 
valid for FGLS59. We multiply the heteroskedasticity weights by 1/j (where j 
is the LD Score summed over regression SNPs) to downweight SNPs that are 
overcounted. This is a heuristic: the optimal approach is to rotate the data so 
that they are decorrelated, but this rotation matrix is difficult to compute.

Two-step estimator. As noted in ref. 19, SNPs with very large effect sizes can 
result in large LD Score regression standard errors for single-trait LD Score 
regression with an unconstrained intercept; cross-trait LD Score regression 
with an unconstrained intercept behaves similarly. This is because of the well-
known fact that linear regression deals poorly with outliers in the response var-
iable (LD Score regression with constrained intercept is not nearly as adversely 
affected by large-effect SNPs). The solution proposed in ref. 19 was to remove 
SNPs with χ2 >80 from the LD Score regression. This is a satisfactory solution 
when the goal is to estimate the LD Score regression intercept. If the goal is to 
distinguish polygenicity from population stratification and we are willing to 
assume that the population stratification is subtle, such that SNPs with χ2 >80 
are much more likely to be real causal SNPs than artifacts, then we can make 
the task much easier by removing these SNPs. However, this is unsatisfactory 
if the goal is to estimate h2: ignoring large-effect SNPs with χ2 >80 would bias 
estimates of h2 and  g toward zero. Therefore, for estimating h2 or  g, we 
take a two-step approach. The first step is to estimate the LD Score regression 
intercept with all SNPs with χ2 >30 removed (all genome-wide significant 
SNPs; the threshold can be adjusted with the –two-step flag in ldsc). The 
second step is to estimate h2 or g using all SNPs and constrained-intercept 
LD Score regression with the intercept constrained to the value from the first 
step (note that we account for uncertainty in the intercept when computing 
standard error).

Assessment of statistical significance via block jackknife. Summary statistics 
for SNPs in LD are correlated, so the ordinary least squares (OLS) standard error 
will be biased downward. We estimate a heteroskedasticity- and correlation- 

(3)(3)
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robust standard error with a block jackknife over blocks of adjacent SNPs. 
This is the same procedure used in ref. 19 and gives accurate standard errors 
in simulations (Table 1). We obtain the standard error for a genetic correlation 
by using a ratio block jackknife over SNPs. The default setting in ldsc is 200 
blocks per genome, which can be adjusted with the –num-blocks flag.

For the two-step estimator, if we were to estimate the intercept in the first 
step and then obtain a jackknife standard error in the second step, treating the 
intercept as fixed, the standard error would be biased downward because it 
would not take into account the uncertainty in the intercept. Instead, we jack-
knife both steps of the procedure, which appropriately accounts for uncertainty 
in the intercept and yields a valid standard error.

Reverse causation. Consider a scenario where a risk factor E1 causes a disease 
D, but the incidence of disease D changes postmorbid levels of E1 (this could 
occur, for example, if incidence of the disease persuades affected individuals 
to change their behavior in ways that lower E1). If D is sufficiently common 
in our GWAS sample, then the genetic correlation may be affected by reverse 
causation. LD Score regression (or any genetic correlation estimator) will yield 
a consistent estimate of the cross-sectional genetic correlation between E1 and 
D at the given time point; however, the cross-sectional genetic correlation 
between E1 and D will be attenuated relative to the genetic correlation between 
disease and premorbid levels of E1. The genetic correlation between disease 
and premorbid levels of the risk factor will typically be the more interesting 
quantity to estimate because it is more closely related to the causal effect of  
E1 on D. We can estimate this quantity by excluding all postmorbid meas-
urements of the risk factor from the risk factor GWAS. This allows us to  
circumvent reverse causation, at the cost of a small decrease in sample size.  
If D is uncommon, then modification of behavior after onset of D will account 
for only a small fraction of the population variance in E1, so the effect of 
reverse causation on genetic correlation will be small. Thus, reverse causation 
is primarily a concern for high-prevalence diseases.

Non-random ascertainment. We show in the Supplementary Note that LD 
Score regression is robust to oversampling of cases in case-control studies, mod-
ulo transformation between observed- and liability-scale heritability, and genetic 
covariance. Oversampling of cases is the most common form of biased sampling, 
but there are many other forms. For example, consider case-control-covariate 
ascertainment, where the sampling of cases and controls takes into account a 
covariate. As a concrete example, we know that high BMI is a major risk factor 
for T2D. If we wish to discover genetic variants that influence risk for T2D via 
mechanisms other than BMI, we may wish to perform a case-control study for 
T2D where we compare BMI-matched cases and controls If we were to use such 
a T2D study and a random population study of BMI to compute the genetic 
correlation between BMI and T2D, the result would be substantially attenuated 
relative to the population genetic correlation between T2D and BMI. (Note that 
this example holds irrespective of whether there is sample overlap and applies 
to all genetic correlation estimators, not just LD Score.)

More generally, let si = 1 denote the event that individual i is selected for  
our study and let Ci denote a vector of covariates describing individual  
i (which may include the phenotype of individual i). We can then represent an 
arbitrary biased sampling scheme by specifying the selection probabilities as 
f(Ci): = P[si = 1 | Ci] (note that case-control ascertainment is the special case 
where Ci = y). Suppose that phenotypes are generated following the model 
from section 1.1 of the Supplementary Note but that our sample is selected 
following biased sampling scheme f. Let aij denote the additive genetic com-
ponent for phenotype j in individual i. If there is no direct ascertainment on 
the basis of genotype (that is, if Ci does not include genotypes), then the proof 
of proposition 1 in the Supplementary Note goes through, except that   is 
replaced by E[yi1yi2 | si = 1] and g is replaced by E[ai1ai2 | si = 1].

This has two practical implications: first, in studies with biased sampling 
schemes and sample overlap, if one wishes to constrain the intercept, one 
should use the within-sample correlation between phenotypes ̂  rather than the 
population correlation. Under biased sampling, plimN i i iE y y s→∞ = =ˆ [ | ] 1 2 1 ,  
which is typically not equal to  . Second, even if there is no sample over-
lap, biased sampling can affect estimate of genetic correlation. If the biased 
sampling mechanism (that is, the function f(Ci): = P[si = 1 | Ci]) is known, 
then it may be possible to explicitly model the biased sampling and derive 

a function to convert genetic correlation estimates from the biased sample 
to population genetic correlations (similar to the derivations in sections 1.3 
and 1.4 of the Supplementary Note). If the biased sampling mechanism can 
only be described qualitatively, then it should at least be possible to guess the 
magnitude and direction of the bias by reasoning about E[yi1yi2 | si = 1] and 
E[ai1ai2 | si = 1].

Computational complexity. Let N denote sample size and M denote the 
number of SNPs. The computational complexities of the steps involved in LD 
Score regression are as follows:

1.  Computing summary statistics takes O(MN) time.
2. � Computing LD Scores takes O(MN) time, although the N for computing 

LD Scores need not be large. We use N = 378 Europeans from the 1000 
Genomes Project.

3.  LD Score regression takes O(M) time and space.

For a user who has already computed summary statistics and downloads 
LD Scores from our website (see URLs), the computational cost of LD Score 
regression is O(M) time and space. For comparison, REML takes O(MN2) 
time to compute the genetic relationship matrix (GRM) and O(N3) time to 
maximize the likelihood.

Practically speaking, estimating LD Scores takes roughly an hour paral-
lelized over chromosomes, and LD Score regression takes about 15 s per pair of 
phenotypes on a 2014 MacBook Air with a 1.7-GHz Intel Core i7 processor.

Simulations. We simulated quantitative traits under an infinitesimal model in 
2,062 controls from a Swedish study. To simulate the standard scenario where 
many causal SNPs are not genotyped, we simulated phenotypes by drawing 
causal SNPs from 622,146 best-guess imputed 1000 Genomes Project SNPs on 
chromosome 2 and then retained only the 90,980 HapMap 3 SNPs with MAF 
above 5% for LD Score regression.

We note that the simulations in ref. 19 showed that single-trait LD Score 
regression is only minimally biased by uncorrected population stratification  
and moderate ancestry mismatch between the reference panel used to  
estimate LD Scores and the population sampled in the GWAS. In particular, 
LD Scores estimated from the 1000 Genomes Project reference panel are 
suitable for use with European-ancestry meta-analyses. Put another way, LD 
Score is only minimally correlated with the per-SNP Wright’s fixation index 
(FST) and the differences in LD Score among European populations are not so 
large as to bias LD Score regression. Because we use the same LD Scores for 
cross-trait LD Score regression as for single-trait LD Score regression, these 
results extend to cross-trait LD Score regression.

Summary statistic data sets. We selected traits for inclusion in the analysis 
for the main text via the following procedure:

1. � Begin with all publicly available non-sex-stratified European-only  
summary statistics.

2.  Remove studies that do not provide signed summary statistics.
3.  Remove studies not imputed to at least phase 2 of HapMap.
4.  Remove studies that adjust for heritable covariates60.
5. � Remove all traits with a heritability z score below 4. Genetic correla-

tion estimates for traits with a heritability z score below 4 are generally  
too noisy to report.

6. � Prune clusters of correlated phenotypes (for example, obesity  
classes 1–3) by picking the trait from each cluster with the highest  
heritability z score.

We then applied the following filters (implemented in the script munge_
sumstats.py included with ldsc):

1. � For studies that provide a measure of imputation quality, filter to INFO 
above 0.9.

2.  For studies that provide sample MAF, filter to sample MAF above 1%.
3. � To restrict to well-imputed SNPs in studies that do not provide a measure 

of imputation quality, filter to SNPs in the HapMap 3 panel61 with a 1000 
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Genomes Project EUR (European) MAF above 5%, which tend to be well 
imputed in most studies. This step should be skipped if INFO scores are 
available for all studies.

4. � If the sample size varies from SNP to SNP, remove SNPs with an effective 
sample size less than 0.67 times the 90th percentile of sample size.

5. � For meta-analyses with specialty chips (for example, the Metabochip), 
remove SNPs with a sample size above the maximum GWAS sample size.

6.  Remove indels and structural variants.
7. � Remove strand-ambiguous SNPs.
8. � Remove SNPs whose alleles do not match the alleles in the 1000 Genomes 

Project.

Genomic control (GC) correction at any stage biases heritability and genetic 
covariance estimates downward (see the Supplementary Note of ref. 19). Biases 
in the numerator and denominator of genetic correlation cancel exactly so that 
genetic correlation is not biased by GC correction. A majority of the studies  
analyzed in this report used GC correction, so we do not report genetic  
covariance and heritability.

Data on Alzheimer’s disease were obtained from the International Genomics 
of Alzheimer’s Project (IGAP). IGAP is a large two-stage study based on 

GWAS of individuals of European ancestry. In stage 1, IGAP used genotyped  
and imputed data for 7,055,881 SNPs to perform meta-analysis of 4 previously  
published GWAS data sets including 17,008 Alzheimer’s disease cases and 37,154 
controls (the European Alzheimer’s Disease Initiative, EADI; the Alzheimer 
Disease Genetics Consortium, ADGC; the Cohorts for Heart and Aging 
Research in Genomic Epidemiology consortium, CHARGE; the Genetic and 
Environmental Risk in Alzheimer’s Disease consortium, GERAD). In stage 2,  
11,632 SNPs were genotyped and tested for association in an independent set 
of 8,572 Alzheimer’s disease cases and 11,312 controls. Finally, a meta-analysis 
was performed combining the results from stages 1 and 2. We only used stage 1  
data for LD Score regression.

59.	Angrist, J.D. & Pischke, J-S. Mostly Harmless Econometrics: An Empiricist’s 
Companion (Princeton Univ. Press, 2008).

60.	Aschard, H., Vilhjálmsson, B.J., Joshi, A.D., Price, A.L. & Kraft, P. Adjusting for 
heritable covariates can bias effect estimates in genome-wide association studies. 
Am. J. Hum. Genet. 96, 329–339 (2015).

61.	International HapMap 3 Consortium. Integrating common and rare genetic variation 
in diverse human populations. Nature 467, 52–58 (2010).
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